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FOREWARD

j This report is the annual report of the research project entitled

"Fluid and Thermodynamic Characteristics of Compressible Recoil Mechanism"

__ covering the period from June, 1978 to August, 1979. The project origi-

nally was funded on February 1, 1977 for a three year period of research

by the U. S. Army Weapon Command of Rhode Island, Illinois. However, the

project was interrupted after the first year on February 1, 1978 because

of the reorganization of the U. S. Army Armament Research and Development

Command. The project was then reactivated by the U. S. Army Armament

Research and Development Command from Dover, N. J. through U. S. Army

__ Research Offices in North Carolina under the contract DAAG 29-78-G-0120

.MM under a reduced funding level at approximately a one-half budget for the

period from June, 1978, to August, 1979. The research effort thus is

accordingly also reduced. The portion of the proposed experimental

investigation was thus terminated and the effort is concentrated in the

development of the numerical prediction for the fluid motion in the

recoil mechanism. Substantial progress has been made in the numerical

solution to the Navier-Stokes equation at high Reynolds number from the

development of the new numerical scheme called "Finite Differential

Method". An outline of the procedure of applying the method to the

recoil mechanism is given which can be carried out in the third year

. ... effort.

The project was conducted by Professors C. J. Chen and

•-E.O0. Macagno with graduate research assistants N. HI. Naseri-Neshat --

and A. M. Fard-Behbahani.
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I. INTRODUCTION

The recoil mechanism is a component of the recoil system which pro-

vides a retarding force acting on the gun so as to brake the rearward

motion in the firing cycle. The counter-recoil mechanism is also a com-

ponent of the recoil mechanisms which stores the energy during the recoil

and dispenses it during the counter-recoil phase so as to bring the gun

back into its in-battery position. Without a recoil system, the force

"acting on the gun and its mounts induced by firing the charge is so

large that damages to the gun often Immediately result. An improperly

designed recoil mechanism can also affect the accuracy of the gun in hit-

ii ting the target and reduce the life of the gun. Therefore, the recoil

system is one of the most important components of a gun system.

Frequent failure and the undesirable characteristic of many springs

used in the recoil mechanism prompted recent designers of a gun system to

adopt more fluid-type recoil mechanisms (hydropneumatic) or the combination

of fluid and sprirg type recoil mechanisms (hydrospring). The fluid recoil

mechanism, gas or liquids, is throttling during a firing cycle through an

orifice which divides the recoil mechanism into two or more chambers. The

difference in the pressure between the chambers thus provides the retarding

force for braking action. The retarding force and the counter-recoiling

force are thus functions of the fluid motion, the type of fluids, and the

orifice geometry of recoil mechanisms. Therefore, the knowledge of

fluid mechanics of the recoil mechanism is an indispensable part of the

weapon design.

The fluid type of record mechanism was considered in the 1960's by

V
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However, it was found (4] that the designed recoil characteristic

such as retarding force and recoiling motion often do not agree with the

experimental measurement. The reason for this discrepancy is largely due

to lack of detailed knowledge about the fluid dynamic characteristics of

the recoil mechanisms. In particular, the value of the orifice discharge.

i coefficient which determines the flow rate through the orifice and, henc.,

the retarding force during recoil motion. The value of the orifice dis-

charge coefficient in many designs was assumed to be constants, typically

ranging from 0.6 to 0.9, which were obtained from experiments of steady

flow through stationary orifice. However, the unsteady flow in the

recoil mechanisms is created by the unsteady motion of the orifice.

Indeed, the orifice discharge coefficient should be the orifice discharge

function and should depend on the flow velocity and the location and

geometry of the orifice.

Several experimental data for simple geometry and steady flow through

stationary orifice are available [6]. Theoretically calculated orifice

discharge coefficient for small Reynolds number with stationary orifice

are also available [7]. However, neither experimental data nor theoreti-

cal prediction of the orifice coefficient are available for the moving

4M orifice in unsteady flow with large Reynolds number such as in recoil

mechanisms.

The aim of this project is to provide the fundamental descriptian

of fluid mechanics for recoil mechanisms and to present an approximate

determination of orifice coefficient and to describe the fluid motion

in the recoil mechanism.

I2

1:
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II. ONE DIMENSIONAL ANALYSIS OF ORIFICE
AREA AND ORIFICE DISCHARGE COEFFICIENT

In order to examine how the fluid flow in the record mechanism affect

M the record motion and how the orifice area is designed, a one dimensional

Pnalysis of fluid motion in the record mechanism ia presented here.

iI-i. Criterion of Orifice Design

A recoil mechanism may be designed to operate on incompressible or

compressible principle. For incompressible type, the total volume of the

r..fcoil cylinder will remain the same during recoil motion since the fluid

is treated .'. incompressible. For the comprcssible type, the volume may

ý )a decre&3ed in the recoil motion. The fluid used in the recoil mechanisms

may be gas or liquid such as air, nitrogen, hydraulic or silicone oil.

In both cases, the orifice must be properly designed to achieve desired

characteristics of retarding force for recoil mechanism.

Before one calculates the fluid motion and the pressure distribution

in a recoil mechanism, design characteristics of recoil mechanisms should

be first defined so that the required geometry of the orifice can be

determined accordingly.

Generally, all recoil mechanisms work on some combination of the

same basic principles; that of providing a controlled resistance over a

set distaace to check the motion of the recoiling parts, then returning

them to the firing position and providing a sufficient restraint to hold

them in that position at a given elevation. A basic requirement for a

recoil mechanism is that the resistance to recoil should be nearly con-

stant for a prescribed recoil distance, since this will produce the

smallest possible force on the gun structure. A typical recoil force
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versus recoil distance relation is given in Fig. 1. The area under the

recoil force-time curve represents recoil impulse to be dissipated by the

recoil mechanism. Clearly, a rectangular curve will yield the lowest

retarding force for a given recoil motion. However, a rectangular curve

is not applicable at the beginning because the recoil resistance K(t)

should not exceed the recoil force B(t) created by the propellant gas.

The total resistance force K(t) is a combination of a hydraulic

force Fo(t), a spring force if a spring is used with fluid and friction

of moving riechanism. Whichever the type of recoil mechanism is used,

this force works as a unit.

P In general, the recoil force B(t) is offset largely by the hydraulic

resistance Fo(t) offered by throttling the fluid through the controlling

orifice and by the spring force. Thus, design of the control orifice is

a vital part of the recoil mechanisms.

We now consider a basic recoil mechanism as shown In Fig. 2 that a

recoiling mass M is subjected to a time dependent recoil force, B(t),

from the discharge in the breech of a gun creating an acceleration of

in the x direction. Here X 0 is taken as the orifice plane before the

recoil motion. The recoil motion of mass M forces the fluid to flow from

Chamber (1) to Chamber (2). The orifice installed between the two

chambers restricts the flow from Chamber (1) to (2) so as to create a

pressure difference between the two chambers. This differential pressure

acts on the wall of recoiling orifice A1 and A2 to control the recoiling

speed and motion. The force balance for the recoil motion can be written

as

ýM_ -=v ii J
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1iX = B(t) - K(t) + M g sin e
E K~)(2-1)

K(t)= PdA1 - A P2dA2 +Ff PF°(t) +Ff

where P and P2 are respectively the pressure distributed on the orifice
P1  2

surface facing Chamber (1) and Chamber (2). A. and A2 are area of the

orifice facing Chambers (1) a. d (2). Here A, = A2 is for incompressible

type and A1 > A2 for compressible type. Ff is tl' frictional resistance

force from seal, various moving parts and, if any, recuperator. The

last term of Eq. (2-1) is the contribution of the gravitational force

with 8 being the inclined angle of the recoil mechanism with respect to

horizontal plane. The dot on X denotes the time derivative. In Eq.

(2-1), the mass M, the retarding force from breech B(t), two areas A1 and

A and frictional resistance force, Ff, are assumed known but distribution
2

of pressures P and P2 acting on the surface A1 and A2 are unknown and must

be solved associated with the fluid motion induced by the motion of re-

coiling parts. In general, both P and P must be integrated from the
1 2

pressure distribution respectively on their surfaces A and A2 .

Now the pressure distribution on the orifice surface and their time

variations must be determined by solving the fluid motion in the recoil

fluid chambers. This creates the coupling between the recoiling force

and the fluid motion. It should also be pointed out here that the de-

signer has very little control over the resistance force, Ff, from the

friction and recuperator and the gravitational force, Mg, but he can con-

trol the resistance offered by the pressure force from the two chambers

by properly designing the orifice such that the total resistance to the

"" . -
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re-coil force is sufficient to arrest the rearward motion of the gun in a

specific recoil length allowed in the design.

One is now faced with the question of what orifice design will pro-

vide the lowest peak resistance force for a given mechanism. To set up

the criterion for the orifice design, let us consider Eq. (2-1) for

recoil motion again. K(t) is the total resistance force including fric-

tional forces Ff and pressure forces F created from the fluid throttling

through the orifice. As the design characteristic of recoil mechanisms

V required that the total resistance K(t) to recoil should be nearly con-

stant for a prescribed recoil length, a trapezoidal shape for K(t) such

as in Fig. 1 is normally adopted.

£ Since Eq. (2-1) is a second order ordinary differential equecion,

one needs two initial conditions to obtain a unique solution. These two

may be taken as

t 0 x= 0 (2-2)

t=0 X= 0 (2-3)

That is initially the recoil mechanism is at rest. However, if the

total resistance K(t) is not specified, there will be infinite many

solutions of X(t) to Eqs. (2-1), (2-2) and (2-3). To determine K(t), we

need additional design constraints. They are:

(1) the velocity of recoil X is zero at the end of the recoil,
•" t =tr, or

= t tr X(tr) =0 (2-4)

RR-
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(2) the total length of recoil allowed is L, which must be

achieved in a duration of t, or

t it X(t) -L (2-5)

While the recoil length may normally be specified, the time duration,

r tr, to arrest the rearward motion of the recoil is dictated by the re-

sistance force K(t) and is not known normally a priori. Indeed, t must
r

be solved with K(t) together. To determine the function K(t) we reason

as follows

SFirst, dc the beginning of recoil, t = 0, and at the end of recoil,

t = , the mechanism is at rest and zero acceleration X = X =0 and

meantime the breech force is zero or B(O) = B(tr) = 0. We thus require

from Eq. (2-1)

K1  K(0) = Mg sin 6 (2-6)

K2 = K(tr) = Mg sin a (2-7)

Here K and K are the resistance at the beginning and at the end of

recoil motion.

Secondly, integrating Eq. (2-2) twice and with the initial conditions

(2-3) and (2-4), we obtain
trt

MX= B(t) dt - K(t) dt +Mg sin e t (2-8)
0 0

Mx B(r)dtdt -KT)dTdt + Mg sin Oe-- (2-9)
0 0 0  0

Now with additional design constraints (2-4) and (2-5), Eqs. (2-8) and

(2-9) become
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B(t)dt,- t" K(t)dt + Mg sin 6t (2-10)

4;and
r t t. tt tr

SML = B(¶)dtdt - K(T)dTdt + Mg sine r o o 2 (2-11)

Integral Eqs. (2-10) and (2-11) thus provide us with a means of determining

the recoil time duration tr and the total resistance force K(t). Since
VV-

Tk the total resistance force K(t) is generally desired to be of trape-

zoidal shape as shown in Fig. 1, if the initial and final periods, tI

and t 2, of the variable resistance force are specified then Eqs. (2-10)

and (2-11) determine uniquely the time t and the maximum total resistance

forK

Either the moment area method or a trial-and-error procedure, as

discussed by Arora and Haug [1] and Coberly [2], may be used to solve

I Eqs. (2-10) and (2-11). Readers are referred to the above references

for more details. The total resistance function K(t) thus can be used

as the criterion of orifice design.

When the total resistanc.- function K(t) is determined one may sub-

stitute the K(t) function into Eqs. (2-8) and (2-9) to obtain the recoil

velocity i(t) and the recoil displacement X(t) as a function of time.

The recoil velocity and displacement in turn become the boundary con-

ditions for the solution of fluid flow in the recoil mechanism. For tne

recoil mechanism shown in Fig. 2, the orifice now must move with

SCX velocity in the recoiling phase. J
The fluid throttling through the orifice must produce a resistance

force such that when combined with other frictional resista&,ce from



seals and other rubbing parts, Ff, it is equal to the desired total

resistance force, K(t). It is a difficult task for a designer to design NA

such an orifice, since he must solve or know how the pressure force is

generated when the fluid is throttling through the orifice. What is

= ~more difficult, the orifice clearance area in general is variable at

different locations; the flow is unsteady and may be in both laminar and

turbulent regions.

11-2. Quasi-Steady One-Dimensional Solution

The fluid motion and the pressure distribution on the orifice

surface are governed by the mass conservation equation, the equation of

state, the Navier-Stokes equation and energy equation for unsteady

compressible fluid. In principle, the continuity equation, momentum

equation, equation of state and energy equation - total of six equations --

provide the solution of pressure, density, temperature and three velocity

components. These equations, however, are coupled with Eq. (2-1) through

the moving boundary condition of X(t). Thus, the fluid motion must be

solved with the piston moving at a speed of X(t).

The initial condition for the flow problem may be assumed to be at

rest. Thus, the velocity is zero everywhere. The initial density and I

pressure in the recoil mechanism is uniform. f

After the gun is fired, the boundary condition for the fluid motion

required that the fluid on the recoil rod assumes the recoil velocity

X(L) and is aL rest on ti. sLaLionary cylinder surface. Now tile oriftice

cross section must be designed so that the pressure forces, Fo, created

by the throttling of fluid between the two chambers plus other resistance

•••i•• •:-•-•-••-• • • .... • -- ..... ' .... 7_•:: ii?7"'--.!•- - ...... :-- -•, -
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A Foby the throttling of fluid between the two chambers plus other resistance

I ___
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Forces, Ff, is equal to the required design characteristic of the total

resistance force K(t). At present, no such general solution of fluid

motion exists even for the simplest recoil mechanism.

We consider a simple fluid dynamic model for the recoil mechanism.

This model in many applications does not provide an accurate description

of the flow pattern in the recoil mechanism, but it provides the first

approximate design of the control orifice. This method also provides a

basis for further modifications in cases of complex geometries and com-

Spressible flow and the flow is one dimensiortal. The assumption of a

quasi-steady flow is equivalent to the assumption that the flow is in-

stantaneously steady and that the force due to the acceleration and

S..deceleration of fluid in the recoil is negligible. The one dimensional

assumption implies that the pressure is uniform in the radical section of
4i

the mechanism. The resistance force offered by the orifice in Eq. (2-1)

thus may be written as

Fo(t) K(t)-F =PA -PA
0 f 1 1 2 2

For incompressible type of recoil mechanisms, we have A = A or

(P - P2= Fo(t)/Al (2-12) 3

The continuity equations for one-dimensional steady incompressible flow

is approximately (see Figure 2)

AoU = (A + A)U(2-13)
0 0 1 01

IIhrv A and A are respectively the orift'e clearance area and or fh.Ic,

surface area facing Chamber (1). U1 is the average velocity in Chamber

(1) relative to orifice velocity. From the boundary condition, we have

Su 1 =i(t) (2-14)
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The momentum equation under quasi-steady, one-dimensional assumption may

be integrated from the Chamber (1) to the rear end of the orifice as

2 P 2U P1 U2 Po
1 + - o + +o +AHf (2-15)

2 p 2 p

Where AHf represents the loss of kinetic energy due to viscous friction

and, if the flow becomes turbulent, turbulent shear. There are six un-

knowns, PI, P21 Po, Ul, Uo, and Ao, in four Eqs. (2-12), (2-13), (2-14)

and (2-15). To facilitate the solution for orifice clearance area Ao,

we assume that the pressure P2 on the rear orifice surface is approximately

equal to the pressure at the end of orifice Po or

±P2 Po (2-16)

The reason for adopting this approximation is as follows. As shown

in Fig. 2, the one-dimensional approximation is perhaps invalid immedi-

ately behind the orifice because from experiments conducted by Chen et

al. [7] as shown in Fig. 3, we recognized that the flow always separates

at the rear side of orifice except at the start of recoil motion. Therefore,

for one-dimensional assumption to remain valid at the end of orifice, the

flow should be considered like a jet (see Fig. 3) and separates at the

rear end corner of the orifice. Under this condition, the pressure in jet

portion of the flow will remain approximately P0. Thus, for no other means

of determining :he pressure on the rear surface of orifice, F2, we equal

WE! P2 to Po on the same cross section which is the closest pressure available

under one-dimensional assumption.

Furthermore, the loss of kinetic energy due to friction, AHf, is

normally proportional to the pressure difference (PI- P2 )/p or

(P1 - P2 )/p (2-17)

* _
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Thus, combining Eqs. (13), (14), (15), (16), the orifice velocity U.

can be written as

U°= CD 2(P1 - P2 ) A (2-18)

Here the orifice discharge coefficient C is introduced to account
D

for the frictional loss and also to serve as a correction factor for the

assumptions made, namely, one-dimensional quasi-steady flow and the

assumptions that lead to Eqs. (2-16) and (2-17). More discussions on

the coefficient CD are given in Section IV.

Now from Eqs. (2-13) and (2-14) we also have

Ao Al 1(2-19)

We thus can solve the orifice clearance area Ao from Eqs. (2-18), (2-19)

and (2-12) as

S [ CD (P .P )2 ]

or

SA 2 Fo(t)2tD +1 (2-20) 1

I,2-

SAi 2 PpAI

UK h

INor
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Equation (2-20) thus provides an approximate way of predicting the ori-

fice clearance area for recoil mechanisms. It should be noted that the

orifice area Ao is a function of orifice surface area A1 , recoiling

speed i, fluid density, p, orifice discharge coefficient, CD, and the

resistant force Fo(t) required from the criterion established for the

orifice design. Since both F (t) and X are time dependent and the
0

Sorifice moves with X, the orifice area Ao must in general vary with the

recoil distance X. The orifice area Ao can now be predicted if the

orifice discharge coefficient CD is known.

11-3. Orifice Discharge Coefficient CD

The orifice discharge coefficient CD was originally introduced

to account for the pressure loss in a steady flow through an orifice.

Customarily, it is treated as a constant. However, in case of recoil

mechanisms CD certainly is not a constant for the fcllowing reasons.

First the recoil rod starts with zero speed and is accelerated to a high

speed flow. Then it decelerates to zero speed and reverses the direction

of motion in the counter-recoil motion. In the process, the flow starts

from laminar motion to turbulent flow and then back to laminar motion

again. The Reynolds number based on upstream gap and instantaneous

average velocity may vary from zero to an order of 104. The orifice

discharge coefficient certainly should vary since Reynolds number varies

over such a wide range. In addition, in order to create a desirable

characteristic of the recoil motion, the orifice clearance area Ao mast

be designed to vary. In summary, the orifice coefficient CD should be

dependent of:
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A. Geometry of orifice and shape of Chambers (1) and (2).

B. Time variable.

C. Laminar and turbulent phenomena.

D. The average velocity across the orifice and viscosity and

Slinear dimensions of orifice, or the Reynolds number.

SE. Fluid compressibility.

The precise value of orifice discharge coefficient C for recoil

mechanisms is not available to date since design of an orifice varys

from one gun to another. Even for the same weapon, if a different

charge is used, the orifice coefficient will be different because dif-

ferent recoil forces produce different recoiling speeds. Although as a

rough approximation, constant values of C between 0.7 - 0.9, had beenSD,

used [3, 4] but the resulting resistance forces were not satisfactory.

In addition, the resistance force generated by the recoil mechanism was

shown by Nerdahl and Frantz [5] and Coberly and Frantz [6] to be sensi-

tive to the change of the value of orifice discharge coefficient.

Therefore, a variable orifice discharge coefficient should be used when-

ever the variable value of CD is available. To date neither experimental

correlation nor theoretical prediction for variable CD is yet available. 1D|

Chen and Macagno [7] are currently attempting to solve the detail of i

fluid motion and thereby to predict the value of CD from the numerically
D!

prediction pressure distribution. While the progress is being made, we

suggest the following temporary measure. To determine the variable

orifice discharge coefficient, we propose that the value of variable

orifice discharge coefficient at any instance during the recoil be the

value for steady flow with the flow Reynolds number , UDA', corresponding



to the instaotaneous Reynolds number XD/v. Here D is the ltpstream

characteristic length, the diameter in case of tube flow and the gap

width in case of annular flow. U is the average velocity upstream of

the orifice. This assumption is consistant with the quasi-steady
5-A

assumption made in deriving Eq. (2-21).

Figure 4 shows the experimental correlation [8] of the orifice dis-

charge coefficient, CD, versus steady flow Reynolds number UD/v as

Ji defined by Eq. (2-18). In this case A is the orifice hole area wd2/4

and (A + A0) is the upstream area or 'rD2 /4. Although the geometry of

orifice in Fig. 4 differs from the one in Fig. 2 for recoil mechanisms,

Fig. 4 does illustrate the qualitative variation of orifice discharge

Scoefficient with Reynolds number as well as the geometry. In Fig. 4,

4 L is the thickness of the orifice. The ratio L/D seems to have an

appreciable effect on CD value. For a given Reynolds number CD value

in general increases with L/D ratio except at a large Reynolds number

over 103.

The flow over Reynolds number of 103 is likely to be turbulent in

some region of the flow. Turbulence is likely to be present near both

orifice front and rear extruding corners and behind the orifice. The

flow near the orifice is very complicated. The flow may separate at

the front corner and reattach and then separate at the rear corner

again. Even when the upstream slow is steady, the separation phenomena

may still be unsteady. That is, the separation bubble may grow to a

certain size and then separate from the corner and is carried downstream.

A new separation bubble may follow to form at the front corner again

and the phenomenon repeats to give a definite periodic separation. The

-MIN -- ~- ' -- ~
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above mentioned phenomenon was observed by Chen and Macagno [7] in simu-

lation of recoil motion with a similar configuration as shown in Fig. 3

at Reynolds number of 3752 based on upstream gap and velocity.

ExaminLi g Fig. 4, we may conclude that the orifice discharge

coefficient CD is less sensitive tu the ratio of d/D in the range 0.04

to 0.25 than to the ratio of L/D. This has a favorable implication

that the C is less dependent on the variable orifice clearance area
D

A 0 required in recoil mechanisms since the ratio A /(A + A) is similar
002

to (d/D) 2 in Fig. 4. This implication will lessen the complication in

determining C for recoil mechanism. The variable orifice coefficientIR cD

C D to be used in recoil mechanism is then a strong function of

instantaneous Reynolds number and the ratio of orifice thickness to

Supstream gap or L/D.

When the fluid is compressible, the orifice coefficient should

be modified. This is discussed also in the report by Chen and Macagno

[7].

In summary, if the resistance force offered by recoil mechanism is

defined, for example, a trapezoidal function in time, then a criterion 12
for orifice design may be reduced from the equation of motion for recoil

mechanism. The orifice clearance area Aomay then be approximately

predicted from the quasi-steady one dimensional analysis for incompres-

sible flow. However, the orifice discharge coefficient, CD, must be pro-

vided from experimental correlation. Since the orifice area, AO, in general

varies with recoil distance, a variable orifice discharge coefficient, C

is proposed and, as a temporary measure, is taken as that of the steady

flow with the instantaneous Reynolds number XD/v replacing the steady

Reynolds number.
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For future design of recoil mechanism, unsteady two dimensional

analysis of flow motion is proposed so that detail and precise pressure

distribution on both sides of the orxfice surface may be predicted.

Such an analysis may be made quite versatile in that orifice geometry,

recoil speed and distance can all be made as input parameters.

II

Ai

.•1

-_ -M
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III. SIMULATION OF FLUID "DYNAMIC CHARACTERISTICS IN RECORD MECHANISM

In this section, we are concerned with the simulation of the fluid

dynamics of recoil mechanisms so that the orifice discharge coefficient,

the recoil motion and force may be properly predicted. In the simulation

experiment, it may also be possible to study the flow patterns, and other

informations which are helpful in understanding the dynamics of recoil

systems. The possibility of using different media and materials in the

simulation is examined. The design configuration is made for compres-

sible fluid recoil mechanism, however, the design procedure may be

applied to conventional recoil mechanisms. The immediate goal of the

design is to obtain experimentally the orifice discharge coefficient.

In the design, calculation of the discharge coefficient is accomplished

through the measurement of forces that are imparted to the stationary

and moving parts of the recoil mechanism, and the measurement of fluid

pressure in the recoil mechanism. The simulation may be also used for

comparison with the numerical predictions.

Ill-1. Simulation Analysis

The purpose of a recoil mechanism is to provide a retarding force

acting on the recoiling parts of the gun in order to control the motion

induced by firing the charge. Two types of recoil mechanisms for large

•--• caliber weapons are in use: (A) compressible fluid (hydropneumatic) i

type, and (B) spring-fluid (gas or liquid) type. The detailed descrip-

tion of recoil mechanisms are available in [9] and [10]. In the present

simulation design, a single orifice, hydropneumatic without spring is

considered. Figure (5) is a schematic sketch of such a recoil mechanism. 1

- - -- - - -
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In order to conduct a simulation experiment, the similarity para-

meters of recoil mechanism must be simulated. To achieve this, let us

describe the similarity parameters by examining fluid flow and piston
motion. The fluid and piston motions are governed separately by two

S~different momentum equations. The two equations are not independent.

They are coupled through the boundary conditions and pressure distri-

bution on the wall surface. Therefore, in the simulation analysis,

both fluid and solid momentum equations must be examined in addition to

geometrical similarity. We examine these similarities in detail.

(A) Geometry Simulation: The geometric simulation can be carried M
out by taking the ratio of all corresponding lengths of prototype and

simulated model equal to an arbitrary constant. Three dimensionless

geometric parameters are considered necessary for simulation. They are

the ratio of orifice gaps to the piston flange, 6/H (see Fig. 5), the

width of the orifice to the piston flange (d/H), and the ratio of .piston

flange to the piston radius (H/R2) or:F2 N =6/H, N = d/H, N H/R2

G1 NG2  NG3  2

r (B) Fluid Dynamic Simulation: The fluid dynamic simulation of un-

steady flows require two dimensionless similarity parameters which must

be kept the same for both prototype and simulation design. These two

similarity parameters are Reynolds number and Strouhal number. The

definition of Reynolds and Strouhal number is obtained from the govern-

ing equation for the fluid flowing through the orifice. The Navier-

Stokes equation for an unsteady, axisymmetric, laminar flow with constant

physical properties and negligible body force is:

[
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av av av avz a v(31
at z az r Br az Re 2 r2 r 2az r/r D

f' where

t = t*/T, r = r*/R2 , z = z*/R 2 , vr = v*/V, vz = v*/V, p =p*/*v
r zz

where V and R2 are the maximum piston velocity (reference velocity) and

the cylinder inner radius as shown in Figure 5 (reference length), t*

denotes time, z* and r* axial and radial coordinates, v* and v* axial
z r

S(tand radial components of velocity, and p*, .p* and v denote density,

pressure, and kinematic viscosity, respectively. T is the reference

time and can be taken as the period of the recoil motion. NS and Re are

Strouhal and Reynolds numbers, respectively or:

yR2  32
Re =V and NS = VT (3-2)

Re and N are the two similarity parameters to be simulated in the

design analysis.

(C) Piston's Motion Simulation: In order to have a complete

rimulation between the prototype and simulation model, it is obvious the

similar piston's motions is needed for both cases. This is to say that

the piston's displacement profile must be the same for the prototype as

well as the simulation model. The governing equation for the motion of

the piston is the Newton's second law, which can be written as:

dv* *
m - B - F(t) (3-3)

dt Mt
*I A

where B and F denote the breech and retarding forces on the piston,

respectively, and m is the recoil mass. v* is the piston velocity andP

t* is time. Equation (3-3) may be made dimensionless with the following

expressions:
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* V Bt*
t ff -,Vp =-', B f Ft

V Mt) B (t) F

where B and F are the maximum breech force and the maximum retarding

force. Introducing the above expressions into (3-3)
i dV

NB Bt - NF'dt (t ~ )(3-4)

j FT

The dimensionless parameters NB mV and NF mV must be the same for

the simulation design to achieve the desired simulation. To facilitate

the calculation of NF and NB, F will be calculated from the following

equation:

F Ap x A (3-5)
1440

where Ap is the pressure difference on the two sides of the piston and

A is the piston flange area. It should be remarked that equation (3-5)

I is the key equation for coupling fluid motion and piston motion. The

value of the breech force B can be obtained from the recoil force that is

generated by the propellant used in a particular recoil mechanism.

The goal of simulation experiment is to provide information about

the fluid dynamic characteristics of recoil mechanisms, in particular

the orifice discharge coefficient. To determine the orifice discharge

coefficient in the simulation experiment, one may measure the force,

F, that is on the recoil system stand and the recoil piston motion

during the experiment. Through equation (3-5) the force measurement

provides the amount of pressure exerted on the walls of the cylinder

which in turn will be used to determine the orifice discharge coefficient

CD. The determination of the orifice discharge coefficient CD, may be

derived as follows: The momentum equatinn (3-2) with one dimensional ]
approximation may be integrated along the stream line to give an



27

approximate formula as shown in Eq. (3-6) where AH is the energy loss

due to viscous effect.

v,2 2+ pfi v.. AH (3-6)

2gc P 2g P

In equation (3-6) the flow is assumed to be quasi-steady and the coordi-

nate system is fixed on the cylinder. p is the density of fluid and g

is gravitational constant. p' and p are the averaged pressures down-

stream and upstream of the orifice, respectively. v and v' are the

velocities at the upstream location and at the orifice, respectively.

From continuity equation for the incompressible fluid, we have

Av = A'v' (3-7)

where A and A' are the piston flange area and the orifice area, respec-

tively. Combining equations (3-6) and (3-7), one obtains the fluid

velocity at orifice area as:

v'CD Ap(2g) (3-8)

where C is introduced to account for the energy loss, unsteady flow and

one dimensional approximation. The variables Ap, v', CD and A' may be

considered to Ary with respect to time in the recoil system. From

equations (3-8) and (3-7), it is obvious that if v, v', Ap, A and A'

are known CD may be calculated. For a simulation experiment A and A'

are given. The fluid velocity at the orifice v' can be obtained from

the measurement of piston velocity V through equation (3-17). The

determination of the pressure difference Ap may be achieved by measuring

the retarding force F on the cylinder with equation (3-5). The force F

i InI In • 4 1 " 
I I |' IIZ
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can be measured such as by a strain gauge type of instrumentation with

an experimental arrangement shown in Fig. (6). The piston velocity can

be measured also during the experiment by displacement transducer. The

force F can be obtained as follows: Suppose that the hydraulic fluid of

the simulation model is evacuated such that inside the recoil system

there is vacuum (or just air). Then the recoil motion of the piston

will be met by only the frictional force from the seals of the outer

cylinder and may be recorded as curve (a) in Fig. (7). Now, with the

simulated hydraulic fluid filling the recoil mechanism, the recoil motion

will be retarded by the additional force F = Ap*A. This force F may

then be obtained by subtracting the frictional force (curve a) from the

force received by the external cylinder of curve (b) on Fig. (7). The

difference between curve (a) and (b) is due to the force exerted by

fluid on the orifice and hence the recoil mass. Once F is found, Ap

can be calculated and, using equation (3-8), CD can be plotted versus

time.

111-2. Simulation Design

k As stated previously, the present design of simulation experiment is

Sfor determination of orifice discharge coefficients in recoil mechanisms.

In order to simulate the fluid flow in the recoil mechanism, the shape

of the geometry and the geometrical ratios NGl S/H, NG2  d/H, NG3

H/R, Strouhal number NS and Reynolds number, Re, must be simulated for

both the prototype and the simulation model. In order to simulate the

recoil motion, the paramoters Np and N must also be simulated for the

prototype and the simulation design. Based on available date [10] Ns,

Re, NF and NB can be calculated for the prototype. One of the simulation
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consideration is that the mass of the recoil piston in the simulation

experiment should be reasonable. Another consideration is that the

time duration of the experiment should be reasonably long to permit

accurate measurements. Table 1 shows the properties of water and Dow

Corning 210-10 centistoke silicone fluid. Table 2 shows the properties

of "clear lucite" which can be used for the cylinder in the simulation.

Clear lucite is a material strong enough to withstand the simulated I i

stresses. It is transparent, allowing observation of fluid motion during

the experiment.

In order to achieve the simulation, we choose the simulation fluid

-5 2
to be water which has a smaller kinematic viscosity (1.06 x 10 ft /sec)

than the hydraulic oil(typically 10 ft /sec). The smaller the fluid

kinematic viscosity is, the smaller the simulated piston veloc-ty is

VR
required to achieve the same Reynolds number 2. This is good because

V
it leads to a longer observation time for the simulation than that would

be in the real recoil motion.

Ccnsideration of using water provides many advantages in the simu-

lation. In the following, we examine the use of water as the simulation

fluid instead of the Dow Corning oil. Table 3 shows different parameters

and symbols with their definition. These values are taken from [10] the

recoil mechanism used in the simulation analysis. In the complete simu-

lation, all geometry ratios NG1 = 6/H, NG2 f d/H and NG = H/R2 must be

k-pt similar. We now need to simulate geometric similarity N Gl' NG2 1 NG3,

fluid flow similarity, NS, Re and recoil similarity NF and NB. Table 4

gives the characteristic value of various simulation (see Fig. 5) where
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TABLE 1. PROPERTIES OF FLUIDS

Dow Corning Silicone Fluid 210-10

Specific gravity 0.94
Density (at STP) 0.03396 ibm/in3

Coefficient of Thermal Expansion 0.006 in/m/*F at STd P.
Viscosity 10 centistoke
Power Point at St d Pressure -85 0 F
Flash Point at St d Pressure 325OF
Specific Heat at 77*F 0.4 Bt/lbm °F
Boiling point at 0.5 mm Hg. Absolute Pressure + 392*F

Nj Water

Specific gravity 1
Density (at STP) 0.036 Ibm/in
Coefficient of Thermal Expansion 0.148 1/*R
Viscosity 1.42 Centipoise
Specific Heat at 77*F 0.99 Btu/lbm *F

TABLE 2. PROPERTIES OF CLEAR LUCITE

Specific Gravity 1.19

Tensile Strength 10500 (psi)

Flexural Strength 16000 (psi)

Compressive Strength 18000 (psi)

Modulus of Elasticity 45000 (psi)

Coefficient of Thermal Expansions 0.00005 (in/in0 F)

Refractive Index 1.49

-.
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TABLE 3. LIST OF SIMULATION VALUES

Symbol

2R Cylinder inner radius 7 in

V Kinematic viscosity 1 17 10- ft 2/sec

V Piston velocity 33.33 ft/sec

V Fluid velocity at orifice 558.735 ft/sec
SA Pston fange area 57.005 in2

A' =Orifice area 4 in 2

SPeriod of a cycle 0.05 sec

m = recoil mass 2855 lbm

p = density 0.03396 lbm/in3

&c = gravity acceleration 32.2 lb.ft/lb. sec2

F = Retarding force 391271.15 lb

B = Breech force

Strouhal number (R/vt) 0.35 4

R = Reynolds number (R v/V) 3046063
e2

NF = FT/mv 0.1935

D1 Piston outer diameter 10.25 in

6 Orifice opening 0.09 in

H Flange Height 1.775 in

d Flange thickness I in

L Cylinder length 18 in

SI-
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K 0.357 means that the simulated size is only 35.7% of the prototype
size.

The reason for considering full scale simulation is that the proto-

type may be obtained from the existing recoil mechanism in use without

P- the need of constructing a new simulating model. The use of the same

hydraulic fluid in the simulation means that the simulation is identical

to the full scale firing of a weapon which is difficult to perform in

4 the laboratory. On the other hand, if simulation with actual size but

with water as media is considered, velocity is one-tenth of the actual

speed and the time scale is 10 times larger for the simulation and the

simulated recoil force (B) is reduced ti ibe-hundredth of the real recoil
s

force (B)p. The simulated mass remains the same as that of the prototype.
p

Therefore, the full size simulation with water as hydraulic oil offers

advantages of (1) slower simulation velocity, (2) longer simulation time

and (3) smaller simulated recoil force. If the full size simulation is

still undesirable because of its dimension or of its large mass, the

simulation with reduced size is calculated and tabulated in Table 4.

gIOn

'Q

'W
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IV. TWO DIMENSIONAL FLOW IN RECOIL MECHANISMS --

A FINITE DIFFERENTIAL METHOD

IV-l. The Finite Differential (FT) Method

In the 1978 annual report [10] of the project and a subsequent

report [11], the finite difference solution of unsteady flow in a recoil

mechanism was given for a Reynolds number of 3470. Here the Reynolds

number was defined with the maximum velocity of the recoil motion and I
the gap between the cylinder and the recoil rod. The result showed that

the finite difference solution with a grid size of (20 x 50) at Reynolds

number of 5 is stable but the solution is unstable at the Reynolds number

of 3470 and needs a scheme that averages the vorticity solution to

stabilize the numerical result. The numerical solution thus only

qualitatively agrees with the experimental visualization of the stream- 5

line pattern in the upper chamber (the high pressure side) of the recoil

mechanism. Further survey of finite difference methods found that the

finite difference solution of the Navier-Stokes equation is quite unstable

at the high Reynolds number unless the grid size is greatly reduced.

Approximately, the grid size Ax required for a stable solution is pro-

portional to the inverse of the Reynolds number. The increase in the

number of grids at high Reynolds number requires considerably large

computer storage and computational time. Even so, most of finite dif-

ference methods show considerable instability if the right combination

of parameters such as the time step, the relaxation factor and the method

of solving simultaneous equation were not adopted. This difficulty also

persists in many simpler flow configurations such as a transient or a

steady flow in a square cavity. For this reason, a new numerical method
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called the finite differential (FT) method was conceived and developed.

The finite differential (FT) method is not the finite difference (FC)

method, nor the finite element (FE) method. The basic principle of the

finite differential (FT) method is outlined here and then the finite

differential (FT) solution for the flow in the square cavity is demon-

strated. A better convergence and stability of the numerical solutions

are obtained from the finite differential (FT) method.

IV-2. The Principle of Finite Differential (FT) Method A

The basic idea of the FT method is the incorporation of local

I analyti, solutions in the numerical solution of partial differential

equation (PDE). The FT method starts with subdivision of the total flow

region, D, into small subregions as shown in Figure 8 in which the

governing partial differential equation (PDE) may be solved analytically.

The assembly of all the local analytic solutions thus constitutes the

numerical solution of the problem. Details of the FT method are outlined

below.

Consider a partial differential equation, (PDE) with a inhomogeneous

term G, L(ý) = G, where L can be any partial differential operator,

linear or nonlinear. This PDE is to be solved in a region D, see Figure i
1. Depending on the operator L, let the boundary conditions and/or

initial conditions be specified so that the problem is well posed. A A

numerical solution is sought when the problem cannot be solved analytically.

In order to solve the problem with the finite differential method, the

complex geometry of the problem is broken up into a number of subregions

cope-

I

S- "r------- --
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I where analytic solutions can be obtained. Let the region D be subdivided

into small rectangles by passing orthogonal lines through the region.

The intersection of these lines forms the nodal points with I = 1,2,3,...,

i-l, i, i + 1,..., IN, and J = 1,2,3,...g, J-l, J, j + l,...,JN. A typical

subregion of the problem with the node point P(i, j) may be surrounded by

the neighboring node points E (east), W (west), S (south), N (north), NE

(northeast), NW (northwest), SE (southeast) and SW (southwest), which

corresponds to points (i + 1, J), (i - 1, j), (i, , (i, J + 1),

(i + 1, j + 1), (i - 1, j + 1), (i + 1, j - 1) and (i - 1, j - 1), res-

actively.

Once the region D has been subdivided into simple rectangular sub-

regions, an analytic solution in the single subregion may be obtained.

In the case when the PDE Is nonlinear, the nonlinear equation may be A

locally linearized in the simple region. However, the overall nonlinear

effect can still be preserved by the assembly of local analytic solutions

which constitute the numerical solution of the PDE over the whole region

D. Indeed, the local linearization technique is also used both in the

FC and the FE methods.

The problem has now been reduced into one with many finite regions,

where analytic solutions can be obtained if the boundary and initial

conditions in each simple finite subregion are properly specified, thereby

making each simple subproblem well posed.

Let the governing equation in a simple subregion be L(ý) = G, where

L here denotes a linear partial differential operator so that an analytic

solution can be obtained for the subregion as a function of the boundary

conditions;
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L(O) =G (4-1)

= f(fN(x,t), fs(x,t), f(yOt), fw(yt), h, k, x, y, t, G) (4-2)

Swhere the fN'fS'fE and fW are prespectively the northern, southern,

eastern and western boundary conditions of the subregion. h is the dis-

tnce between the point P and the sides N and S. Similarly k is the respec-

tive distances between point P and the sides E and W. The boundary con-

Sditions fN and fs of the element are functions of x, while fE and fw are

functions of y. The boundary functions f's (i.e., fN,fs,fE and fW) may

be approximately expressed in terms of the nodal values along the boundary

such as, f's = i(On,...) where ,n' are the values of the dependent vari-

ables on each node points n, n being E, W, N, S, NE, NW, SE and SW in this

particular case. Substituting the boundary conditions expressed by Cn

into Eq. (4-2) and evaluating the relationship between the functional value

at an interior point of the local subregion p and its surrounding points we

have

Op = fE,,NOONONSOSW,... (4-3) A

which is the fundamental formula for the present FT method. For the

linear or locally linearized problem, the 9-point FT formula has the form,

C + C + CNcN + CStS + C + CSESE

4 (4-4)

+ c + Csw~sw + S(G)

where the coefficients C's are obtained from the local analytic solution.

S(G) is a part of the inhomogeneous solution. If the larger subregion

S-MM
A=0i
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shown by the dotted lines in Figure 1 is used, a more accurate 17-point

formula can be obtained. It should be remarked here that the finite

differential solution obtained in Eq. (4-4) in the interior of the subregion

is exact in the sense that it is obtained from an analytical solution to the

PDE in the finite subregion. The only approximation involved is from the

boundary conditions.

In an internal finite subregion of the total region D, the neighboring

points of p such as *E' OW' etc. are, in general, unknown. However,

they can be in turn expressed as an analytic function of their neighboring

points. This may be done repeatedly for all the unknown nodes (I,J) in

the total region D

t•i,j = Ci+lj ¢i+lj + C i-l,j 'i-lj + "'" + fij(G) (4-5)

where 0i, is 0p of a given subregion and other *'s in Eq. (4-5) are the

boundary values given in Eq. (4-4). The assembly of all the expressions

for all nodes points can then be expressed in a matrix form. The system

of algebraic equations can now be solved numerically as in the finite

difference method to give the numerical solution of the total problem.

This is the essence of the finite differential (FT) method.

There is an essential difference between the finite differential

(FT) method just described and the finite difference (FC) or finite

element (FE) methods. In the FC method, the relationship of cp to its
p

neighboring points is not obtained from the analytic solution of the

differential equation but, instead, from the difference formula truncated

from the Taylor series expansion of the dependent variable about its

neighboring points. On the other hand, the FE method assumes an approx-

imated functional form (shape function), normally some polynomial of lower

degree, say up to 5th or 6th degree, to represent the solution and uses

A!
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the variational or Galerkin type of integration on the differential

equation to find the relation between p and its neighboring points. It
p

Sshould be remarked here that the derivatives of the solution from the

finite differential solution may be obtained by differentiating Eq. (4-1).

The resulting equation will provide the derivative at any given point in

the subregion without loss of accuracy due to differentiation.

IV-3. The Finite Differential Solution of Unsteady
Two-Dimensional Namier-Stoke Equation

The unsteady two-dimensional incompressible viscous flow can be

formulated with the stream function * and the vorticity C, as a dependent

variable. The independent variables are two dimensionless space coordi-

nates (x,y) and the dimensionless time t. These independent variables

are normalized with a reference length L and a reference time scale L/U,

where U is the reference velocity. The Reynolds number thus is defined as

UL/v. v is the kinematic viscosity. In order that the stream function

satisfies the continuity equation, we have the velocity components in an

x and y direction, u and v, as

u=ip v=-•x " (4-6)
y

The scalar component of vorticity (z direction) • can be defined as

= -x yuy xx+iyy) . (47)

Taking the curl operation of the momentum equation, we have the voriticy

transport equation

S+ 2Ax + 2B =E + E (4-8)Et x y xx yy

L&I
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with

A =R u/2 and R v/2
e e

With the appropriate boundary and initial condition equations (4-6), (4-7),

r and (4-8) will provide the solutions to u, v, * and 4. The pressure

distribution P can be obtained from the integration of the Navier-Stokes

equation.

~ Since equation (4-8) is a nonlinear equation, the analytic solution

to the whole region of flow, either in a cavity or in a recoil mechanism

is not available. Therefore, the finite differential (FT) numerical

solution is one way to obtain an approximate solution. To implement the

FT method, the flow region D (see Fig. 4) is subdivided into many sub-

regions. In each region, equation (4-8) is linearized; that is, A and B

are assumed as known averaged values within the subregion. In each

subregion, the boundary conditions at the north, south, east and west

are denoted as 4nis,•e,•w, and En,•s,•eFw. If the initial condition
s se9w n se w

for the vorticity ý is given, the problem in the subregion is well defined

and can be solved.

Details of the finite differential solution to the vorticity trans-

port equation (4-8) and Poisson equation (4-7) are given respectively in

Appendices A and B.

The finite differential solution for the Poisson equation (4-7) is

given in Appendix B, equation (B-16) as

= (c 6 + c2 + c) Sin + c 4 SinT

n-- -2
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The velocity components u and v may be obtained by differentiation of

the stream function *. Nine-point formulas for u and v are given byp

equations (B-17) and (B-18) of Appendix B.

The coefficients c2,c 4 ,c 6 , and c are given in Appendix B. They con-

tain the known vorticity in the subregion and the 8-nodal point boundary

stream functions (i.e.,*ne, e, se ,*nW,*w~sw and Js). Equation (4-9) is

thus reduced to the form given in equation (4-4) or, more generally,

equation (4-5) relating the central nodal value to the neighboring 8

] , nodal values.

The steady flow solution of the vorticity transport equation (4-8)

is solved to provide the FT 9-point formula for the vorticity at the center

a a
of the subregion (0,0) (see Appendix A, equation (,-?),

p p

s nir i i
&P nff (c + c2 ) Sin T + (c 3 +c 4 ) Sin (4-10)

n~l1 2m1l 3

Again, equation (4-10) may be written in the form given by equation (4-4)

and (4-5).

IV-4. Numerical Calculation and Discussion

In order to examine the accuracy and stability of the new Finite

Differential Method, the case of steady recoil motion without orifice is

considered. This is the case similar to the steady state driven cavity

flow. The reason for selecting this flow is that there is an abundance

of similar works available for comparison.

To solve the steady flow without orifice as shown in Figure 9,

equations (4-6), (4-7) and (4-8) must be solved with the boundary conditions
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x 0 andx=i , u v 0 or i- 0 , a0/lx-0

y O u 1, v - 0 or 0 ol/ay - 1 (4-11)

y i , u v 0 or =0 , a/ay

The finite differential solution of the problem is solved with the finite

differential 9-point formulas (4-9) and (4-10) for the stream function and

vorticity function. Equations (B-17) and (B-18) in Appendix B provide the

finite differential solutions to the velocity components u and v. The

numerical solution procedure is as follows:

(1) A guessed vorticity is made and the stream function is solved from

equation (4-9) with the boundary condition 4 - 0 given in equation

(4-11).

(2) The velocity components u and v at each node are calculated from

equation (4-10) with the boundary condition (4-11).

(3) The vorticity function is then solved from equation (4-10) with the

"boundary condition (4-11).

(4) The newly computed vorticity function is compared with the guessed

or old vorticity given in Step 1. The solution converges if the

difference is within the given convergence criterion. If not, the

procedure is repeated from Step (1) using the newly calculated I
vorticity as the guessed value.

The above procedure is essentially an iterative scheme. In solving

each equation, (4-9) and (4-10) an ADI (Alterative Direction Implicit)

method is used with the SOR (Succession Over Relaxation) scheme. Also, " 1

before returning to Step 1, the SUR scheme is used to reduce the sensi- Y

tivity of the system of the algebraic equations. Before calculating the

A
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cavity flow problem a test was made to solve a simple problem with constant

velocity u and v (i.e., assuming A and B in equation (4-8) to be constant).

It was found that the FT solution is more accurate than the finite differ-

ence method. In particular, the FT method showed to be more stable than

the finite difference method at high Reynolds number (i.e., large value of

A and B). For the solution at high Reynolds number, the FT method provides

converged solutions when the grid size is reduced. The Reynolds number of

100, 400, and 1,000 have been calculated. As an example, the cavity flow

with Re = 1000 is given in Figures 10 and 11. Figure 10 provides the

stream pattern of the steady flow in the recoil mechanism without orifice.

Figure 11 gives the corresponding vorticity distribution in the cavity.

• IV-5. Conclusion

In this chapter, the new numerical method entitled "The Finite

Differential Method" is introduced. The finite differential (FT) method

V i is shown to give more accurate results than the finite difference (FC)
!I

method under the same flow conditions. Specifically, the convergencei

Ji• and the stability of the FT method is much superior than the FC method.

For the flow with high Reynolds number of the order 103 the FT

method may still predict stable solution provided that small grid sizes

are used and the successive under relaxation (SUR) scheme is used between

interactions.

Although the FT method requires much analytic work in the initial

derivation of the finite differential formula, the many flow calculation

can be solved relatively easily afterward since the finite differential

formula are similar even for different flow conditions. The FT method

7-
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Sis j: deve&l,,i;•d and requires further study before it may put into

practical prediction of the orifice coefficient ad for design of recoil

mechanism.

Irecoi

JI
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V. SUMMARY, CONCLUSION AND SUGGESTIONS

The present art of the design of recoil mechanisms still relies

heavily on the one dimensional analysis of flow motion in the recoil

system and on the trial and error method of experiment. The present

report attempts to improve the one dimensional fluid flow analysis in

Chapter II where the unsteadiness of the flow in record mechanism is

approximately incorporated into the use of the orifice discharge

coefficient. On the other hand, a simulation design is given in

Chapter III where an analys.s is given to show how the experimental

duration may be increased based on similarity argument, thereby providing

a longer time duration for the instrumental measurement as well as the

flow visualization. It should be pointed out that the physical under-

standing of the fluid motion in the recoil mechanism is still lacking.

For example, design engineers still do not know when and where the flow

in the record mechanism will become turbulent.

In Chapter IV, a new numerical method is developed with the aim to

calculate fluid motion at high Reynolds number in tne -ecord system.

The preliminary calculation shows that the FT method is superior to the

FC method in the accuracy of the convergence and the convergence and the

stability of the numerical prediction. It is hoped that the design of

recoil mechanism may eventually be done tirst on the computer. Simulation

before an expensive experiment and the long duration of the experimen-

tation commences. The modernization of the design of the fluid type

recoil mechanism needs the accurace solution of the fluid flow inside

the recoil mechanism. In order to achieve this and it requires a

commitment of the Army Armament Research and Development Command.

I
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APPENDIX A. THE 9-POINT FINITE DIFFERENTIAL SOLUTION
OF THE VORTICITY TRANSPORT EQUATION

WithiA-R u and B -R v assumed to be known constants in a
2 e 2 e

given subregion, the linearized vorticity transport equation for a two

dimensional incompressible viscous flow is

ýt + 2Ag x + 2B Ey = 9xx + tyy (A-l)

The initial condition or any condition for the next time incremental

step in a subregion may be approximately taken as

=2 =2+ 2
(x,y,t =ao + =aly + ax + axY + a +ax + a6xy

+ a7 x y + ax Y2 (A-2)

where 9 coefficients a (i 1,1,2,...,8) can be determined from the 9

nodal values of • at the boundary.

The boundary condition of the subregion may be approximately taken

as, for example,

SE(y,t) [(aE + aet) + (bE + bEt)y + (cE + cct)y2I (A-3)

Similarly for CS, N and .

Introducing a change of variable

we may reduce Eq. (A-l) to a simpler form

2 2
t + A+B) xx +yy(A5
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- with the initial and boundary conditions

i l~.C. t = to t (xY~to e-A+y

B.C. x = Ax E = e-(AX+By)

= ~~(AAx-By)(A6x =-Ax =w(y, t) e(x-) (A-6)

W1

y = Ay = (Xt) e-(Ax+BAy)

y= -y= (X,t) e(-X+BAy)

The problem of (A-2) with (A-6) may be solved by superposition of a

steady part E and an unsteady part or

$stv,y) + t (x,y,t) (A-7)

or

1 = •S(x,y) + •t(x,y,t) -

For the FT 9-point formula which provides an algebraic relation between the

central node (x = 0, y = 0) value p with the neighboring 8-point node

value Eq. (A-7) can be evaluated at x = 0, y = 0. Details of the derivation

of the 9-point formula is given below.

A-1. Solution to the Navier-Stokes Equation, Steady Part

The steady part of the two-dimensional vorticity transport equation

now becomes

-s - -( 2  2 -s+ (A +B) = 0 (A-8)xx yy

___ ~ ~ ~ ~ J ______ _ _ __4
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with boundary conditions

s ) AAx-Byt (, e xf -Ax
(A-9)

•s s e-(ax+BAy)
ts(X) ea, y Ay

s s -As+BAyts w(X e y =-Ay

This problem can be solved analytically by further dividing it into

simpler problems having one or two nonhomogenous boundary conditions in

one direction. Due to linearity, the final solution will be the super-

position of all these simple problems. Assuming a second order polynomial
S S~ S

(higher order polynomials can also be taken) for boundaries g' •W' N .

and s, the coefficients can be found in terms of the surrounding vortici-

ties. For example, for the east boundary for the 9-point finite differ-

ential (steady part of Eq. (A-3))

E(y) = aE + bEy + cEy (A-1)

where

1 1
aE =•~~

1 = (i+lj+l i+l,j i+l,j-I
2Ay 

--
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S "Note should be taken that if only a steady problem is being solved, the

vorticities in the above coefficients are the same vorticities as being

calculated. However, for the case of unsteady Navier-Stokes equation, the

vorticities in these coefficients aE, bE and cE are the previous time step

vorticities. In this case the unsteady solution is only part of the overall

solution which is added to the unsteady part. If the problem is calculated

from fluid at rest, the contribution of the steady part for the first time

step will be zero.

The steady vorticity transport Eq. (A-8) is now divided into two

simpler problems each with two nonhomogenous boundary conditions as

follow:

Problem (1)

L = 0 (A-11)

B.C. •i= (a + bEY + cy 2 ) e-(Ax+By) x=x

i2 (AAx-By-

•i = , y = +Ay

Problem (2)

L2=0 (A-13)2

B.C. x = _Ax

(a 5 +b~ csx 2 ) -Ax+BAy , ex* x(12
0 + y f --Ay

2 ±A
(a J ~ (xBy

2= 9 Ay A-14
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where

and

•2

a a 2 2L= - + y--- (A + B)x2 2
ax 2 ay

Solution to Problem (1)
--S

Assuming gI = X(x) Y(y), and substituting in the differential equation,

the variables are separated. The two boundary conditions in the y-direction

in this case are used to find the eigenvalues. Then the problem is reduced

to find the function A (x) in the series solution

=8(x,y) I A (x) sin n (y + Ay) (A-15)

To do this, the above equation is differentiated with respect to x and y

and substituted in the governing differential equation (A-11) to produce

an ordinary differential equation for An (x) or

A n(x) -(A2 + B2 + xn )A n(x) =0 (A-16)

When A is the eigenvalue n'r/2Ay. The two nonhomogenous boundary conditionsn

in the x-direction are now used to find the solution for this equation.

The solution to Problem (1) becomes

-(x,y):_ e• c e +(y + Aye (A-17)

1 --- 1 2. .
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where
A (Ax) eEAx - A (-Ax)e-EAx

C n n
1 2E x -2E xe -e

(A-18)

EAx -EAx
An (-Ax) e - A (Ax) e

2  2E x -2Ex i
e - e A

with

-AAx
A (Ax) =e (aE1 + bE + cn Ay E1 E2 3

(A-19)

AAx
A (-Ax) e (awE1 + bwE2  cwE3 )

E =A A2 + B2 + x 2
n

and

-Bysin -n- (y + Ay)dy I
Ay 2Ay

iy -By n n
E2= ye sin 2-• Cy + Ay)dy (A-20)

-Ay

2 AY -By n

E3 = f y2 e sin n:y (y + Ay)dy3 yA

Solution to Problem (2)

The same procedure as in Problem (1) is repeated for Problem (2) in

Eqs. (A-13) and (A-14)

12A
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P mm

2= e + c4 e-Fy) sin (x + tx) (A-21)
S~M=l

SA where

SA2 2 2 ,m•
F A + + Im Pm

c 3 and c4 are similar to c and c with x, Ax, y,Ay, A, and B replaced by

y, Ay, x, Ax, B, and A respectively.

Adding Eqs. (A-7) and (A-21) and evaluating at x 0 and y 0, we

get the central nodal value of teh steady vorticity solution as

Z 1Kfi (c1 + c sin + (c3 + c) s in (A22
(cp+c 2 ) (c c (A.-22)

p n 1 2 m24

The neighboring 8 nodal vslues of vorticity are included in the coefficients

c1, c2 , C3 , and c4 as given in Eq. (A-18)

A-2. Solution to Unsteady Navier-Stokes Equation

From Eq. (A-7) the problem (A-5) and (A-6), after subtraction of the

steady part (A-8) and (A-9), is reduced to

at 0
L = (A-23)

and the initial and boundary conditions become

•t n-lI,~o e-(Ax+By)

I.C. t t toy~ (A-24)
0 0

B.C. x =Ax zt = Y,t) e-(AAx+By)

,+AAx-By

x7 -AxT7i~: zzt (yt
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Sgt e-(Ax+BAy)

y = Ay = •N(X,t) e

S•t e-Ax+BAy
y = -Ay (X,t)-e (A-25)I'I

where

aa a2  2 2
L --- - + (A + B)a xt 2 3y2

In order to solve the time dependent problem (A-23) with given boundary and

initial conditions (A-24) and (A-25), it is divided into five simpler

problems each having one nonzero boundary or initial condition. These are

given as fer" ows:

Problem (3) :

/0 I i
I.C. 0O= •n-l~xy e(Ax+By) ,t=t

B.C. t=0 x = ±Ax (A-26)

t = 0 Y = +Ay0

Problem (4):

-I •L= 0
'I=

I .C. =0 t =0

' c~t2) - (AAx+By)

B.C. t (aEt +bEty + cty x =Ax (A-27)

1= 0 , y= y
I I

?Z37CT. .Ih IIi1.
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Problem (5):

L•=0

I.C. =0 t 0

B.C. 020 x Ax (A-28)

= awt + bwty + cty2) Ax-By
N ct 3 X fi-Ax

-2 0 , y= ±Ay

Problem (6):

Lg3 = 0

I.C. 93f0 tf 00

B.C. 3 =0 , x ±+Ax (A-29)

= - 2 AAX-By" f(aNt + bNty + CNtY2) e y =Ay

3 0 y -Ay

Pioblem (7):

L4 =
I* 4--o ,t=

B.C. E 0 , x = ±Ax (A-30)

0 y=Ay

4  (ast + bstx + cstx2 ) eAs+BAY -Ay
4 s s
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In the above problems, the coefficients a, b, and c are given in terms of

the boundary vorticity. For example, for the east boundary;

aE = ýi+l,j/At

bE = (%i+lj+l - •i+lj-i)/2AtAy (A-31)

gE =(i+l,j+l -
2 ±i+l,j + •+l!,-14 y

Solution to Problem (3)

Because of the linearization (assumption of constant A and B in a

subregion), the variables caal be separated and solved accordingly. The

n-ivorticity n-(x,y) in the initial condition is just the value of vorticity

in the subregion at initial time (previous time step is denoted by a super-

script n-l) which can be approximated by a polynomial of x and y. For a

9-point finite differential, the polynomial and the coefficients are:

wh1(xy) =-a0 +a 1y + a2x + a3xy + a 4y + a 5 x + a 6xy + a7x y + a8 x y2•i i (A-32)

S~where

n-1 n

=1 (•n-I _ n-i
1 Ay i,j+l -i,j-/)

n-11
Sa2 1 •n- rn-i '

=Ax i+l,j -"i-11)

1 /n-il + n-l - n-la 3 =4AxAy (Ci+l,J+l + Ei-l'j-! - $1l~j+l i+l,j-I ..:1
Si4
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L ( n -I + n-1 +1

4 2 Ay 2  J ,\ l - b.jI

- 1 U'-* 1- + 2ý n-1~
52A.2x~~ i1l~j i

1 nlx-lny n-i 2 n-1 n-
a6  4xy2 -~~~ ý~s~ i- ,11+Eilj 2 l + U 1,jJ

1__ In-i - l i n-ln- l n-l

1~~~~~~ +V*- 1 -~ n 2 1 +

1 n-i n-i + n-i n-i n-i n-i

a8 4Ax AY
2 0~'+1 i %-1j+l j+l,j-i ~i-i,,J- 4  

-dil

- 2En-l E nl 2tn-1(A-33)

The analytic solution to Problem (3) is found to be

z= k=1 t - 1 + [H - Ay(c Q cQ1 ~

kirr 2i
whee Xsin -~-sin (i A-34)

2~ 221

2 ~~ 2B ~~-~ (-

H1 3 aEli' + Z E'E' + aEli' + Eli' +=a E3E{ a E{_El+Z E'E-

+ a E'E a VE'

+t =8r

e sin (yr + Ay) dy

AY 2Ay

Ay -B 'r

yewo si-Ly yd
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NY 2 e -B~yye sin (y + Ay)dy (A-35)
32-y

E', E' and 'are similar to ' 2' and ' respectively with y, Ay, B and"1 2 E3 ar iia oEE 3

t changed to x, Ax, A and k.

Clc 2, c 3 and c are the same as the steady part. Q1 and Q are

Q1 =eEAx (-

IL

EAx 2x[- (-1) e

2

2Ax

ii Again Q3and Q4are similar to QIand Q2with Ax and k changed to Ay and :

2. respectively .

Solution 
to Problem 

(4)

: This problem is solved similarly by the method of separation of

•:• ~ variables. Assuming •I F(t~x) Y(y), and substituting into the differential !

equation (A-27), the variables are separated. The two zero boundary con- ,}

ditions at y = +Ay are used to find the eigenvalu'~s. Thus the problem is •

F 2  +(t ,kx) i

reduced to findingmFarto 
Qn Qc

var a le x,y,t) =A F 2 .(t,x) sin s iy t difIf

('-•-*j:- F (x. sin -- . (y + Ay) (A-36)2Ayi

.. .... ......
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To find F (t,x), first a change of variable is made so that a homogenous

boundary condition in the x-direction is found by assuming

F =F x+ Ax e (a -a E + + b E3)t (A-37)
P, 2tAx y aEj bEE2  E 3

by substitution of Eq. (A-37) into Eq. (A-27) a new nonhomogenous differ-

ential equation with the variables t and x will be found with homogenous

boundary and initial condition which can be solved again by separation of

variables with the result

A,, X (t) sin (x+ Ax) si (y+A)+ I x +Axz=i k=l£ 1 =i

1+ sn • (y + Ay) (A-38)

2Ay

which can be evaluated at the center of the subregion x = 0 and y = 0.

The coefficient A l(t) is'•~~ ~ l(t) 1 i1 e-sII

S~where

A= + B+ + -

2 - + 2y Pkl
2Ax

- Pkl•I- 2•x 2
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Pk -2Ax(-l)l -

-AAx
(a A E EE2' + RE3) (A-39)

a J Ay

- 1h

bE A

E 2AtAy '(i+l,j+l - i+l,j-i)

C E 2 2 (i+lJ+ - 2 i+l,j + Ei+l,j-1)

Solution to Problem (5)_

The solution procedure for this problem is similar to Problem (4)

but only the nonhomogenity is changed from the position x = Ax to x = -Ax.

The solution is

A2 =(t) sin - (x + AX) 3in (y + AD
%=1 k=l 22

_ x -AAx y£--i M2ax a ', 2 (y + AyD (A-40) :

where ••

1t = (t --+ _ •+ (-e ) _I
Ak~t t

= A + B + + (2Ay x

A2  MB2+(•) Pk2" 2Ax2Ai

I•. 41

S .. . . . ... . '-•. _
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'= 2 Pk22Ax2

4Ax2 2
Pk2= kn

Mx

A=-1 ~a .2 CW ~3/

The solution to Problems (6) and (7) are similar to Problems (4) and (5)

with x, Ax, y, Ay, k, k, A and B changing to y, Ay, x, Ax, k, k, B and A

respectively. Also the boundaries change respectively from East and West

to North and South.

i~

•- i
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APPENDIX B. THE 9-POINT FINITE DIFFERENTIAL SOLUTION
OF THE TWO-DIMENSIONAL POISSON EQUATION

The two-dimensional Poisson equation and its boundary condition here

are given as A

2 2
+g

2 2

with boundary conditions

P =g(y) , X Ax

Sy) x -Ax

(B-2)

Yx= )N(X) , y =Ay

* =Ps(x) , y =-Ay

where for the 9-point finite-differential method the boundaries will be

second order polynomials of x or y. As an example

( a' + b'y + cy 2  (B-3)

where

aE = i+l,j

bE= y (Pi+Ij+I -2i+l,j-I)

CE- 22 ('i+l,j+l 24'i+l,j + 'i+l,j-l)

ii
2Ay
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To solve the problem (B-l) and (B-2), it is divided into two simpler

problems as

= *I + *2 (B-4)

where

Problem (1):

V 21 = 0

(y) x = Ax

*1 *W(Y) x = -Ax

(B-5)

£ I)= )N(x) ' Y y j n

* 1 4)5 (x) Y -Ay

Problem (2):

V2*2 = -t(x;y)

•2=0 , x = _Ax

(B-6)

*2 0 , y = ±y

B-1. Solution to Problem (1)

Again for simplicity and due to linearity, this problem is divided

into two problems each having two homogeneous boundary conditions as:

€l(x,y) = u(xy) + w(x,y) (B-7)

Ii4___ __ 2
4 -- --- ~ ~- - -- - -- - ~t
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| Iwhere

u2 iV Vu =0

U )E(y) x =Ax
!E

u w(y) , x -Ax (B-8)

u 0 y =±Ay

and

w =0 x =±Ax

wf W(X) , y =Ay (B-9)w N

w= s(X) y =-Ay

The solution to u and w can simply be found by separation of variable and

added together to give the solution to Problem (1).
ad[ed

*( = 1 sinh(Vnx) + c2 cosh(pnx)] sin n (y -Ay)n--l

(B-10)

+ I [3 sLinh(•mY + c4 cosh(Vmy)] sin (x + Ax)
m=l

where

(ai a')E' + (b' - b')Et + (cý -'E

C1  2Ay sinh(n AX)

a+ a')E + (b' + b')E' + (c ' + c')E'C2W (a+•E +"E w 3W-

2  2Ay sinh(I_ Ax)
n

IZ_
~ - ~ . ~ -
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and

nit mt
n 2Ay m 2LAx

c3 and cB are similar to cI and c but x, Ax, y, Ay, a and B are replacc.d

with y, Ay, x, Ax, B and A respectively.

B-2. Solution to Problem (2)

In this case first the homogenous equation is solved and with the

use of two homogenous boundary conditions, the eigenvalues are found. The

solution to Problem (2) given by Eq. (B-6) is assumed to be

0n0

, 2 (x,y) = c (x) sin (y + Ay (B-li)

To find the unknown function c (x), Eq. (B-li) is substituted into the

Poisson equation (B-6) resulting in

[ [c"(x) - pn (x)] sin P (y + Ay) = -•(x,y) (B-12)m=l n n i

Now the vorticity F(x,y) can be assumed to be a polynomial of x and y
related to the 9-nodal points in the finite differential element. The

coeffic-: ints of the polynomial are thus expressed by the 9-nodal values of

the vorticity. Now that i(x,y) is known it can be expanded in terms of

Fourier sine series and substitued in Eq. (B-12). On setting the coeffi- -

cients of the sine terms on each side equal to each othee, a second order

ordinary differential equation for c nx) will result which can be solved

accordingly. The homogenous boundary conditions in the y-direction can

now be used to find the two constants of integration. The result of

21.
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Problem (2) thus becomes

'2 =n=l• [c 5 sinh(vnX) + c6 cosh(pnx) + ax2 + bx + c] sin (y + Ay)

(B-13)
bAx

c5 = ish hi Ax)s nn

c + Ax ac6 = 1 (p Ax)

a =-- a + = E, + a9E')

S 51 6E2 93pniAy

(B-14)

S(a2E. + a E'+

2 21 2 8E
yn

E' + +-aE + a2 11 32 73 2
p Ay 11

n n
in 2Ay

Note that a's are evaluated at the present vorticity values if the flow

under consideration is an unsteady flow.

In this part E{., E', and E' are

LAy

iE1 = | sin n- (y + Ay)dy

f-Ay 2AyI
E= y sin n (y + Ay)dy (B-15)

3 y

A_____ 2
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ii The FT 9-point formula for the stream function, ', thus is obtained by .

superposing the solutions, ' 1 and '2, given in Eqs. (B-10) on!! (B-13),

and evaluating them at the center of the subregion x 0, y 0, or 'p(0.0) A
p A

%p '1(0.0) + '2(0.0)

-c2 sin + mc sin 1g
n=l m-l

n (c+ c) sin c
I n=l

SThe velocity components u = @/DY and v =-3*/Dx are obtained by the

differentiation of the stream function and 0 given in Eqs. (B-10) andI
S~(B-13) with respect to x and y. Thus the velocity components at the center

node of the subregion u =u(0.0), v =v(0.0) are

pI

u =--+-

no + !oI= Z 2 11n Cos2y+ c c3 p sinm"

Lit-

+ .[c + c] UnCos -- (B-17)
6 n=1
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p ax

- c1 1 sin!~ jc C o R7r

1n mn 4 m 2

- [c 5 in +b] sin 2B18
n1-

BLA


